High performance numerical simulations for acoustic waves and tomographic images

Dimitri Komatitsch, Paul Cristini and Zhinan Xie

Laboratory of Mechanics and Acoustics
CNRS, Marseille, France

ERCOFTAC TURBINTERMED, Toulon, France
April 10, 2013
Application domains

Earthquakes

Ocean acoustics

Non destructive testing
Brief history of numerical methods

Acoustic or seismic wave equation: tremendous increase of computational power \(\Rightarrow\) development of numerical methods for accurate modeling in complex 3D models has been a continuous effort in the last 40 years.

Boundary-element or boundary-integral methods: Kawase 1988, Sanchez-Sesma et al. 1991…, homogeneous layers, expensive in 3D but can be made faster (fast multipoles, e.g. Bonnet, Semblat, Chaillat et al.)

Spectral and pseudo-spectral methods: Carcione 1990…, smooth media, difficult for boundary conditions, difficult on parallel computers

Classical finite-element methods: Lysmer and Drake 1972, Marfurt 1984, Bielak et al 1998…, linear systems, large amount of numerical dispersion

Let us combine the advantages of the last two.
Spectral-Element Method

- Developed in Computational Fluid Dynamics (Patera 1984)
- Accuracy of a pseudospectral method, flexibility of a finite-element method; continuous Galerkin, can be made discontinuous (DG) if needed
- Extended by Komatitsch and Tromp, Chaljub et al.
- Large curved “spectral” finite-elements with high-degree polynomial interpolation
- Mesh honors the main discontinuities (velocity, density) and topography
- Very efficient on parallel computers, no linear system to invert (diagonal mass matrix)
Equations of Motion (solid)

Differential or strong form (e.g., finite differences):

\[\rho \partial_t^2 \mathbf{u} = \nabla \cdot \mathbf{\sigma} + \mathbf{f} \]

We solve the integral or weak form:

\[\int \rho \mathbf{w} \cdot \partial_t^2 \mathbf{u} d^3r = -\int \nabla \mathbf{w} : \mathbf{\sigma} d^3r \]

\[+ \mathbf{M} : \nabla \mathbf{w}(\mathbf{r}_s) S(t) - \int_{F-S} \mathbf{w} \cdot \mathbf{\sigma} \cdot \hat{n} d^2r \]

+ attenuation (memory variables) and ocean load
Equations of Motion (fluid)

Differential or \textit{strong} form in the time domain:

\[\rho \partial_t \mathbf{v} = -\nabla p \]
\[\partial_t p = -\kappa \nabla \cdot \mathbf{v} \]

We use a generalized velocity potential \(\chi \)

The integral or \textit{weak} form is:

\[\int \kappa^{-1} w \partial_t \chi \, d^3r = -\int \rho^{-1} \nabla w \cdot \nabla \chi \, d^3r \]

\[+ \int_{F-S} w \hat{n} \cdot \mathbf{v} \, d^2r \]

\(\Rightarrow \) cheap (scalar potential)
\(\Rightarrow \) natural coupling with solid
Finite Elements

- High-degree pseudospectral finite elements
- $N = 4$ to 8 usually
- *Strictly* diagonal mass matrix
- No linear system to invert
Goal: modeling (linear) acoustic or seismic wave propagation in complex models

The SPECFEM3D source code is open (GNU GPL v2)

Mostly developed by Dimitri Komatitsch and Jeroen Tromp at Harvard University, Caltech and Princeton (USA) and later University of Pau (France) since 1996.

Improved with CNRS (Marseille, France), INRIA (Pau, France), the Barcelona Supercomputing Center (Spain) and University of Basel (Switzerland).
Oil industry applications

- Elastic wave propagation in complex 3D structures,

- Often fluid / solid problems: many oil fields are located offshore (deep offshore, or shallower).

- Anisotropic rocks, geological faults, cracks, bathymetry / topography…

- Thin weathered zone / layer at the surface ⇒ model dispersive surface waves.
• Ocean acoustics modeling with strong bathymetry of the fluid/solid interface

• Stoneley-Scholte waves very sensitive to the ocean bottom structure, but difficult to model numerically
Ocean acoustics

Numerical simulation

Wave propagation across an impedance discontinuity.
Influence on interface waves.

Experiments performed in tanks

Experimental tanks in Marseille

Experiments in known environment / setup
Perform experimental benchmarks
Non destructive testing of materials

Collaboration with LCND in Aix-en-Provence, France.

Currently at LCND: Physical modeling based on diffusion functions for objects of complex shape, cracks or multiple cavities in concrete, metals, or composite materials. Experiments on samples.

Very accurate calculations without homogenization can validate (or not) these diffusion functions and extend them beyond their domain of validity.

Reliable modeling of the “coda” part of the signal, which contains useful information on the medium.
Surface acoustic waves (SAW) and anisotropy

Nathalie Favretto-Cristini and Dimitri Komatitsch,
Collaboration with José Carcione and Fabio Cavallini (OGS Trieste, Italy)

General context: Non-destructive testing or laboratory experiments.

Existing: Physical and quasi-analytical studies of existence and properties of SAW.

but along the symmetry planes only,
and many published articles contradict each other.

Our study: Numerical calculation of SAW at the surface of a cubic or hexagonal medium with or without heterogeneities.

What our study leads to:
• Clarifying the existing literature,
• Numerical calculations easy outside of the symmetry planes,
• Application to non-destructive testing.
Parallel calculations based on non-blocking message passing (MPI), overlapping communication with calculations.
GPU graphics cards

Why are they so powerful for scientific computing? Compute all pixels simultaneously, massive multithreading.

High-frequency ocean acoustics, inverse problems in seismology, acoustic tomography, reverse-time migration in seismics: high resolution needed, and/or large iterative problems to solve ⇒ Big calculations to perform.

⇒ GPU computing: code is complex to rewrite, but large speedup can be obtained (around 20x-30x for our finite-element codes, but it is difficult to define speedup).
San Andreas – January 9, 1857

Horizontal scale $\approx 80\, \text{km}$

Los Angeles
sedimentary basin,
California, USA

Horizontal scale $\approx 200\, \text{m}$

San Andreas Fault,
Carrizo Plain,
California, USA
Earthquakes at the regional scale

Scale approximately 500 km

3D spectral-element method (SEM)
Adjoint methods for tomography and imaging

\[\chi_1(m) = \frac{1}{2} \sum_{r=1}^{N_r} \int_0^T w_r(t) \| s(x_r, t; m) - d(x_r, t) \|^2 \, dt, \]

\[\delta \chi_1 = \int_V [K_\rho(x) \delta \ln \rho(x) + K_\mu(x) \delta \ln \mu(x) + K_\kappa(x) \delta \ln \kappa(x)] \, d^3 x, \]

\[K_\kappa(x) = - \int_0^T \kappa(x) [\nabla \cdot s^\dagger(x, T - t)] [\nabla \cdot s(x, t)] \, dt, \]

Theory: A. Tarantola, Talagrand and Courtier.

‘Banana-Donut’ kernels (Tony Dahlen et al., Princeton)

Close to time reversal (Mathias Fink et al.) but not identical, thus interesting developments to do.

Idea: apply this to tomography of the full Earth (current project with Princeton University, USA), and in acoustic tomography: ocean acoustics, non destructive testing.
Tape et al. (2009): 143 earthquakes used in inversion

- 3 simulations per earthquake per iteration
- 16 iterations
- 6,864 simulations
- 168 processor cores per simulation
- 45 minutes of wall-clock time per simulation
- 864,864 processor core hours

Princeton, USA
Ocean acoustics movie

Source near the sea bottom, waves entering a shallow channel.
On modern computers, large 3D full-waveform forward modeling problems can be solved at high resolution for acoustic / elastic / viscoelastic / poroelastic / seismic waves.

The Legendre spectral-element method (SEM) is very efficient for that, in particular on modern parallel computers.

Inverse (adjoint) tomography / imaging problems can also be studied, although the cost is still high.

Useful in different industries in addition to academia: oil and gas, medical imaging, ocean acoustics / sonars, non destructive testing (concrete, composite media, fractures, cracks).

Hybrid (GPU) computing is useful to solve inverse problems in seismic wave propagation and imaging.

Note: the SPECFEM3D source code is freely available open source at http://www.geodynamics.org