Institut Méditerranéen d’Océanologie
Accueil du site > Agenda > Thèses > Publication MIO : Vincent Fauvelle, Javier Castro-Jiménez, Natascha Schmidt, (...)

Publication MIO : Vincent Fauvelle, Javier Castro-Jiménez, Natascha Schmidt, Benoit Carlez, Christos Panagiotopoulos and Richard Sempéré - One-Single Extraction Procedure for the Simultaneous Determination of a Wide Range of Polar and Nonpolar Organic Contaminants in Seawater

Version imprimable de cet article

in Front. Mar. Sci., 31 August 2018 | https://doi.org/10.3389/fmars.2018.00295

Plastic materials contain 6% of additives (e.g., phthalates, bisphenols) giving specific properties to each material in terms of softness, colour, resistance to light, etc.). Organic additives may therefore transfer to the marine environment, and are usually analysed in seawater by group of compounds having similar physico-chemical characteristics (hydrophobicity, volatility, solubility in water, etc.). In this paper, we propose a common extraction step for a wide range of plastic additives (phthalates, bisphenols, organophosphate flame retardants) and other flame retardants (perfuorinated compounds), followed by a fractionation step that allows analyzing separately the compounds by liquid or gas chromatography coupled to mass spectrometry, depending on their intrinsic properties.

A rapid analytical method including one-single solid-phase extraction (SPE) procedure followed by gas and liquid chromatography coupled with high resolution mass spectrometry detection (GC–MS and LC–HRMS respectively) was developed for the quantification of 40 organic compounds (1.6 < log Kow < 9.5) in seawater including both legacy and emerging contaminants, with a focus on the most common plastic organic additives. This new method allowed for the analyses of nine organophosphate esters (OPEs), seven phthalates (PAEs), six bisphenols (BPs), five perfluorinated compounds (PFCs), and thirteen legacy organochlorinated compounds (OCs, including polychlorobiphenyles and pesticides) with recoveries in the ranges of 57–124% for OPEs, 52–163% for PAEs, 64–118% for BPs, 63–124% for PFCs, and 40–95% for OCs. As a result of (i) strict cleanup protocols, (ii) material, and solvent selection, and (iii) the use of an ISO 6 cleanroom for sample treatment, the procedural blank levels were always lower than 5 ng L−1, even for the most abundant and ubiquitous compounds like tris-(2-chloro, 1-methylethyl) phosphate (TCPP) and diethylhexyl phthalate (DEHP). The quantification limits were in the ranges of 0.03–0.75 ng L−1 for OPEs, 0.03–0.25 ng L−1 for PAEs, 0.1–5 ng L−1 for BPs, 0.1–8 ng L−1 for PFCs, and 0.02–1.1 ng L−1 for OCs, matching seawater analysis requirements. Dissolved water phase samples collected in Marseille Bay (NW Mediterranean Sea) were analyzed using the developed method reveling the concentration of PAEs up to 140 ng L−1 (DEHP) and that of OCs up to 70 ng L−1 (α-endosulfan). For the first time, we also provided the concentrations of OPEs (TCPP up to 450 ng L−1), BPs (bisphenol S up to 123 ng L−1), and PFCs (PFOS up to 5 ng L−1) in this area. A sampling station close to the municipal waste water treatment plant outfall exhibited the highest concentration levels for all compounds.

Voir en ligne : https://www.frontiersin.org/article...